“杀死”光刻机全球第一,比造一台光刻机容易多了(万字长文) (下)

在展会上老贾还发现一个好消息:

他们的PAS 2400几乎一直正常运行。

而尼康等企业的光刻机在演示过程中都出了问题。

为了维修设备,对手的展台经常闭门谢客。

那年夏天,阿斯麦终于拿下了AMD的一台测试样机订单。客户反馈不错,但就是不下订单。

当年全球半导体市场进入下行周期,光刻机买家很少,美国和日本企业还是占据主导地位。

老贾有些灰心了:没有一家正经厂商下订,连飞利浦都拒绝承诺购买。

与此同时,母公司ASM也陷入困境,亏损580万美元。

为了帮阿斯麦找市场,老普甚至跑到保加利亚拿到了一台订单。

员工说:“没客户,没机器。老板像疯子一样到处跑,到处花钱,就好像钱会过期一样。”

1986年,阿斯麦依然没客户,而每个月的开支高达数百万美元。

市场变化太快了,PAS 2500也不能满足需求了。美国企业正朝着专用集成电路(ASIC)发展,阿斯麦需要研发新一代升级版——PAS 3000,并实现高度的自动化。

很多研发人员陷入了长期“996”和“007”的状态里。

阿斯麦在当地租了一栋楼供加班员工睡觉,另一些人把睡袋放在后备箱,以防“睡楼”里住满了人。

1986年,市场复苏,AMD订购2台PAS 2500,中国订购了一台油压驱动的旧式PAS 2000。

那些想在VLSI领域大干一场的芯片制造商开始关注日本之外的设备厂商。

500

老贾给大家鼓劲:“今年我们卖多少台,那就是基数,明年就能翻5~10倍!”

1986年5月,第一台PAS 2500量产光刻机终于下线了。

当第一台交付给客户的光刻机用叉车装进卡车的时候,负责维护机器的工程师维克的心提到了嗓子眼。

他发现有一个标记某部件的气球漏气了,他跳进卡车里,把气球吹了起来。

同事哈哈大笑,说他就好像在给机器做人工呼吸。

卡车一路缓缓行驶,阿斯麦没有联系交警开道。

每当车队停在十字路口,员工们一窝蜂地走上去指挥交通。

这台机器的正常交付给阿斯麦员工注入了强心剂,大家工作热情高涨,自愿加班,有时候甚至昼夜不停。

但无论这时故事充满多少温情与热情,他们都不是国际舞台的主角。

阿斯麦市占率只有5%,只能靠荷兰政府提供的研发拨款和补贴来维生。

蔡司的镜头问题最终把G公司拉下王座,而尼康改进了自家的光学系统,乘势而上,在80年代后期成为全球光刻机的新霸主。

老普在接盘以后对阿斯麦无法盈利的处境越来越愤怒,1986年母公司亏损2500万美元,阿斯麦亏了1400万美元。

而这时蔡司的镜头有一半都不合格,另一半还迟迟不到货。

老普压力大到顶不住了,母公司在芯片炉等设备上挣的钱全都用来给阿斯麦填窟窿了,即便这样阿斯麦工资也快发不出来了,老贾还要母公司追加投资,老普和老贾甚至会在走廊里互相咆哮。

老普只能考虑出售阿斯麦,断尾求生。

他联系了日本的三井物产、住友集团洽谈收购,未果。

直到1987年6月1日,AMD终于下了25台PAS 2500的订单,那天老贾高兴得在走廊里吹了一天的口哨。

但是两个月后,他卸任的日子也到来了,另一家德国公司把他挖走了。

300多人给他筹集的离职红包,放在一个帽子里,不到80美元。

至此,阿斯麦烧钱规模已累计5000万美元。

还能再糟糕一点吗?

不会了,因为天降猛男了。

1986年,张忠谋受邀回到中国台湾,出任台湾工研院的院长。

500

1987年,工研院和飞利浦成立了一家合资公司,名叫“台积电”,飞利浦占股27.5%,是台积电最大的外部股东,还将一些芯片生产线转移到了中国台湾。

结果1988年底,台积电新产线就快装好的时候,发生了一场大火。

台积电把所有烟熏火燎过的光刻机退回了阿斯麦,还下了17台新订单。

阿斯麦发现这些退回来的机器,有的只让烟熏了一下,很容易修好。

而为火灾买单的保险公司成了阿斯麦1989年最大的客户。

当年的74台订单让阿斯麦利润翻了一番,达到700万美元,全球市占率达到15%。

但是大火不是年年有,阿斯麦怎么才能更上一层楼,超过尼康和佳能呢?

你需要把事情做对,然后耐心等着对手出错。

1988年,合资企业解散,阿斯麦从两个爸爸手中独立了出来。如果有朝一日阿斯麦上市或出售,老普的ASM将受益。

为了抓住DRAM(一种内存)市场蓬勃发展的机会,所有光刻机厂商都在布局。

光刻机中不同波长的光对应着不同的制程工艺。

500

总体上,光刻机用的光线一直是往更短波长发展的,从紫外、深紫外到极紫外,都快接近X射线了。

500

佳能和尼康选择“跳过i线”,直接从g线跳到深紫外线(DUV,图中的KrF和ArF),但碰到了棘手的技术问题,当时连适合248纳米DUV的光刻胶都没有。

而阿斯麦刚刚历尽劫难,没能力大举投入DUV,只能老老实实做i线。

从荷兰政府和欧共体那里,阿斯麦拿到了1650万美元用来研发新的PAS 5500,也就是i线的步进式光刻机。

这时候,阿斯麦遇到了台积电之后的第二个贵人——IBM。

IBM财大气粗,为了从6英寸晶圆升级到8英寸,他们决定第一个吃螃蟹,业内第一套8英寸设备的研发费用他们包圆了。

8英寸晶圆面积是6英寸的1.778倍,能切出的晶粒(Die)就更多,浪费更少,帮企业挣到更多的钱。

500

最后IBM投入的这笔金额是——10亿美元。

但对阿斯麦不利的是,他们在IBM的供应商名单中排在最后一名,第5名。

IBM大部分人倾向于尼康这些“老牌”巨头。

巧的是,在美国纽约州达奇斯县的东菲什基尔,IBM全新工厂的负责人凯利没有墨守成规,而是对所有供应商一视同仁。

500

相比于对手,阿斯麦的优势是精确的曝光对准。

IBM的高管希望来到阿斯麦公司考察新机。

PAS 5500的总架构师老范(范登布林克)要求所有人严阵以待,各司其职,演示10个子系统模块,比如镜头组、电动晶圆台。

在IBM高管来访前的周末,老范亲自给所有工程师的老婆们打电话:

“对不起,您的丈夫这周末必须加班,我们需要他。”

但是1991年1月11日,老范接到IBM的电话:他们来不了了。

海湾战争打响,IBM不让高管坐飞机,因为那样会有风险。

老范急眼了,在公司里疯狂咆哮,因为如果拿不下IBM,阿斯麦可能离倒闭关门就不远了。

同事老波(波拉克)看着他发泄完,点了一支烟:“你知道不,咱们应该直捣黄龙,去他们IBM。”

老范惊了:“但咱没法带机器过去啊。”

老波说,立马成立一个摄制组,把原本要展示的所有内容拍成录像带。

500

老范喜出望外。

他们找了一家专业的影视公司,拍摄剪辑好以后第二天就飞到了IBM总部。

凯利等高管看了影片,有人差点从椅子上摔了下来。

用他们的原话来说:“我们从来没见过这么先进的设备。”

PAS 5500在业内率先使用模块化设计,并行开发,每个模块都留有自动通信接口,最终拼装成一台光刻机。

500

这种设计的研发、生产效率都大大提高。

而且模块化设计可以让客户随意选配各种部件包,包括各种镜头,各种尺寸,各种光源,各种投影模式,应有尽有。

所以阿斯麦把这一代光刻机做成了一代光刻平台。

就这样,阿斯麦实现了IBM的破冰之旅。

为了大批量供应光刻机,阿斯麦转过头去开始倒逼蔡司转型升级。

蔡司6个“金手指”辛苦一年,只能交付10个i线光学元件。

产能低得像一个噩梦。

他们必须摒弃过去“金手指”工匠纯手工打磨镜片的方式,加入全自动化设备。

随着PAS 5500的普及,蔡司终于解决了镜头生产对人工的依赖问题。

1996年,抛光机器人就可以让镜头元件的精度达到原子级别,只需要80个人就能年产200多个复杂镜头。

500

再后来,蔡司高管加入阿斯麦监事会,双方建立独家排他关系,阿斯麦入股蔡司,还为后来的EUV光刻机蔡司光学系统研发提供资金支持。双方紧紧地绑在了一条船上。

但回到90年代初期,阿斯麦最大的问题还是缺钱。

1991年,阿斯麦亏损了500万美元。

飞利浦并购部门建议关掉阿斯麦。

阿斯麦方面表示PAS 5500订单能让公司起死回生,恳求老东家不要断奶!

他们还腆着脸找飞利浦借了2100万美元来发工资。

1993年,情况开始改善,订单量、交付量显著提升,公司现金流第一次开始正向净流入,盈利1100万美元。

他们拿着2100万美元的支票拍到了飞利浦同事的桌上,笑得像个傻子一样,其他在场的人都使劲鼓掌。

第二天飞利浦财务部的人打电话来把他们骂了一顿:“下次别再用支票付这么多钱了,集团损失了两天的利息呢!”

这一时期,阿斯麦的步进光刻机比竞品贵25%,但是生产精度和生产率都更高,能很快帮客户把钱挣回来。

他们甚至有信心跟客户签“不赚钱不付款”的合同,一开始只收80%的钱,尾款根据客户业绩支付。

为了筹到更多的钱扩大生产,阿斯麦在90年代初期选择上市,并拿下了韩国三星等大企业的订单。

飞利浦通过阿斯麦上市获得了1.25亿美元。

1996年,荷兰新闻周刊Elsevier将阿斯麦排在值得购买的股票列表的第一名。

20世纪末,他们离登顶全球光刻机霸主只剩一步之遥。

那时候,阿斯麦的一些员工穿着T恤衫走来走去。

衣服上印着一行大字:我们会打败日本人。

那么尼康,是如何走下神坛的?

03

20世纪末,当时先进的制程工艺从130纳米来到90纳米,晶圆尺寸从8英寸来到12英寸,光刻机的波长也从248纳米进入193纳米。

用干式193纳米(波长)光刻机,极限的制程工艺是65纳米。

怎么做出40纳米以下制程的芯片,所有半导体专家都在探索。

500

当时给出的方案包括157纳米F2激光、电子束投射、离子投射、EUV(13.5纳米)和X光等。

尼康等企业都选择了157纳米激光方案,因为难度低一些。

阿斯麦没想好,于是决定157纳米和EUV两条路线齐头并进。

结果尼康做了半天,样机测试结果并不理想,一直琢磨怎么缩短光的波长,没弄好。

而2004年,阿斯麦利用当时最新的“浸润原理”,做出了浸没式光刻机。

500

而浸润原理很简单,就是在光刻胶上方抹一层水,水的介质折射率是1.44,那么193纳米÷1.44≈134纳米。

2006年,阿斯麦的新款光刻机在英特尔顺利通过40纳米工艺验证,拿下了英特尔的大订单。

而此时尼康在157纳米路线上积重难返,新型光刻机也无人问津。

因为阿斯麦光刻机最后一片镜片是纯平的(能放水),而尼康的是曲面镜片。

如果尼康要改用浸没式系统,整个镜头光路都要推倒重来,至少需要2年时间。

2009年,阿斯麦反超尼康,首次占据了光刻机7成的市场份额,把尼康逼到了墙角,此后再无翻身的余地。

500

而阿斯麦利用193纳米浸没式光刻机一路做到了7纳米制程工艺。

但是即便如此,这也只是停留在深紫外(DUV)的领域,还没有达到今天登峰造极的极紫外(EUV)光刻机领域。

从1997年开始,英特尔为了突破193纳米的限制,发起了EUV LLC联盟,集合阿斯麦、AMD、摩托罗拉、美国三大国家实验室,召集几百名顶级科学家,投入2亿美元,发表几百篇论文,只为了从理论上验证EUV的可行性。

500

EUV使用的13.5纳米光线,波长太短,连空气都穿不透,只能在真空环境中传播,现实中没有任何单层材料可以反射它,而是需要几十层钼和硅层层叠叠摞起来,在镜片上镀膜才能完成,每一层只有纳米级别的厚度,且每层误差不能超过0.01纳米,相当于京沪高铁一根铁轨,起伏不能超过1毫米。

500

钼反射镜

2003年,理论验证完成,联盟解散,球传到了阿斯麦脚下。

这个联盟成立的一个特殊背景是,美国人要不要向外国企业开放研究成果?

美国政界多数人认为荷兰是美国可靠的合作伙伴,但不包括日本。

就这样,美国允许了阿斯麦获得美国国家实验室最先进的光刻研究成果,而把尼康和佳能排除在外。

在联盟尚在的2001年,阿斯麦还收购了美国最后一家头部光刻企业SVG,阿斯麦获得了一些EUV光刻方面的专利技术。

2010年,阿斯麦造出了人类第一台EUV工程样机。

直到今天,它都是世界上唯一一家量产EUV光刻机的企业。

500

它已经成为荷兰最大的出口企业,全球最大的芯片设备制造商。

这就是阿斯麦的故事。

开头我说了,这是一个能让国人既振奋又沮丧的故事。

振奋的地方在于,我们看阿斯麦的成长,跟一家创业公司九死一生的故事没什么两样。

从一小撮人开始,他们甚至都没有信心活下去,随时想着“跑路”回飞利浦上班,到挺过一道道难关,实现出货,实现签单,实现逆袭。

这样的事荷兰人能做到,中国人能做不到?

但是让人沮丧的地方在于,我们在国内和友邦当中,可能严重缺乏像蔡司、尼康这样的顶级光学仪器制造商。

以智能手机镜头为例,国内虽然有舜宇光学这样的企业可以提供相机模组了。

500

但是国产旗舰机的顶级光学解决方案依然严重依赖海外供应商,比如蔡司和索尼。

更不要提什么EUV光刻机的国产光学解决方案了。

从蔡司的发展史来看,培养顶级半导体光学系统的技术能力可能是一个比打造光刻机系统更漫长的过程。

因为光刻机的镜头是全世界最大、最精细的单反。

玩过摄影的人都知道,好镜头和差镜头的一大区别在于图像畸变的程度。

500

摄影的时候畸变,你还可以后期处理,但光刻机的成像必须矫正到0,就要靠插入镜头来解决镜头带来的问题。

结果就是一套套越来越复杂的光学系统。

500

各种光刻机镜头光路对比

来源:启哥有何妙计

这其中很多镜片都是来修正成像质量的。

最后导致一个光刻机镜头可能1米多高、1吨多重。

500

你需要能把光路精确地算出来,把镜头组合设计出来、制造出来,达到极高的工艺精度,还能完成整个镜头组的定心安装。

蔡司表示,如果把EUV光刻机镜片的面积放大到德国国土面积,那么镜头的高低误差也只有0.1毫米。

如果想要做好国产光刻机,我们第一步要做的就是培育好国产的光刻机供应链体系。

人才供给、高端材料供给、零部件和机加工设备供给,缺一不可。

研发一台光刻机,需要光学、数学、物理、化学、力学、材料、精密仪器、机械、自动化、软件识别等多学科人才通力合作。

500

而据阿斯麦老总自己估计,他们自己只生产EUV光刻机15%的零部件,其余都是从上千家公司购买的。他们有一整套严谨细密的供应商监控手段。

读过今天的故事,相信你已经理解了,这家公司一开始连工作日志都懒得记,能达到今天的供应链管理水平都是一点点积累起来的。

产业升级,国产替代,没有什么神话,只有一砖一瓦。

现在,我们应该像阿斯麦当年一样,先定个小目标:打败日本人。

因为中低端光刻机,比如28纳米、90纳米制程设备,由于较低的技术壁垒,竞争者数量多,尼康与佳能凭借价格优势占据中低端市场主导地位。

从中低端慢慢做起,培育产业链,一步步往上走。

就像上周阿斯麦的CEO温宁克说的:“如果中国得不到这些机器,他们就会自己研发。这需要时间,但最终他们会实现目标。”

500

“中国的‘物理定律’和我们这儿的一样,你越给他们施加压力,他们越有可能加倍努力。”

所以不要急,不要像日本人当年那样,连国产DUV光刻胶都没有的时候,就急着去做EUV。

EUV只占全球光刻机市场的8%,剩下的92%等着我们去抢。

500

抢到了,那就是给中国EUV铺好的垫脚石。

我们这一代人,等着看中国EUV摘桃子的那一天。

参考文献:

瑞尼·雷吉梅克:《光刻巨人:ASML崛起之路》,478页

Chris Miller: Chip War: The Fight for the World's Most Critical Technology,464页

启哥有何妙计:ASML的登峰之路,给你带来不一样的光刻机故事……

全部专栏