理论物理新方向:用高一维的拓扑序来全息理解量子场论
广义对称性是一种超越群论的新型的对称性,其需要用高一维的拓扑序来描写。演生的广义对称性可能完全决定无能隙态(也就是量子场论)的低能性质,这改变了我们对量子场论和无能隙系统的基本看法和思路。这将成为量子场论与强关联量子物质研究的一个重要方向,甚至可能是一个主导的方向。
撰文 | 文小刚 (美国国家科学院院士、麻省理工学院格林讲席教授)
编辑 | 陈钢 (北京大学)
凝聚态物理是研究多体系统(如材料)物理性质的学科。该领域最重要的问题之一是理解材料中大量自由度在量子基态(即低温态)下的组织形式,因为系统几乎所有的低温性质都由此决定。我们将量子基态中的这种组织形式称为“量子纠缠模式”。
了理解超越对称性的新型多体组织形式,我们需要把物质态分为两类。一类是有能隙的物质态,一类是无能隙的物质态。有能隙的物质态,包括绝缘体,量子霍尔态等等,其需要注入一个有限大小的能量来产生一个激发。无能隙的物质态,包括超导体,超流体,量子相变的临界点等等,其产生一个激发所需的能量可以是无限小。这两种物质态,都具有超越对称性的组织形式(也具有由对称性所描写的组织形式)。
在有能隙系统中,这种超越对称性的新型多体组织形式被称为“拓扑序”(2010年,我们意识到拓扑序本质上是长程纠缠的模式),这开启了凝聚态物理理论研究的一个新方向。
超越对称性框架,在N→∞极限下,对波函数Φ(m1,m2, …,mN)进行完全分类,这一数学问题极具挑战性。而发展这一描述多体纠缠模式的数学理论至关重要,代表着理论物理的未来方向。
其实,多体纠缠(即拓扑序)是物理学中的全新现象,其需要全新数学语言来描述。这正像牛顿时代曲线运动需要全新的数学——微积分——来描述。这种新数学是什么?2005年以来的研究表明,高阶融合范畴理论可能正是描述长程纠缠的数学框架,正如群论是描述物理中对称破缺的数学框架,这为我们全面理解有能隙物态提供了数学的框架及语言。这让我们对有能隙物态有了一个完全系统的理解。
下一步,我们想要完全系统地理解联无能隙量子物态与量子场论(这两个名称指向同一问题)。这些无能隙的量子物质可能甚至没有弱相互作用的准粒子激发。这是理论物理学长期悬而未决的难题。我们在量子色动力学(QCD)、早期宇宙相变、高温超导体、量子自旋液体、量子材料临界点等问题中都面临这一困境。近年来理论物理学的新进展,让我们有望在这一长期难题上取得突破,这或将推动理论物理学进入新纪元。
这一新发展受到两个方面的推动:第一个是过去三十余年通过对有能隙高度纠缠物质相(即拓扑序)的研究,我们发现拓扑序和多体纠缠模式可通过新数学理论——高阶融合范畴——来进行描述和分类;第二个是近十年对对称性本质有了更全面深入的理解。
众所周知,对称性可约束低能动力性质,也就是限制无能隙态和量子场论的性质。同样值得注意的是,无能隙态和量子场论在低能区可呈现演生对称性,我们可利用这种演生对称性来表征无能隙态和量子场论的低能性质。
过去十年来,我们发现量子系统演生对称性的形式十分丰富:既包括传统群论描述的对称性,也包含反常对称性、高阶群所描述的高阶对称性、反常高阶对称性,以及超越群与高阶群的不可逆对称性等。所有这些广义对称性都可用于表征无能隙态和量子场论的低能性质。
当对称性被如此深度推广后,其与(不可逆的)引力反常已难以区分——后者同样可约束低能动力性质。我们又知道(不可逆的)引力反常本质上就是高一维的拓扑序。这两点发现引导我们建立了描述上述广义对称性的统一理论。这一统一理论不是群论,而是高一维的拓扑序,也就是数学上的高阶融合范畴。
当把对称性理论如此深远地扩展之后,我们突然发现,有一个愿景,或者说是梦想,也许可以成真:演生的广义对称性可能完全决定无能隙态(也就是量子场论)的低能性质。换言之,每一个可能的低能性质都对应于一个演生的广义对称性。如此一来,对高阶融合范畴的分类(既对高一维的拓扑序的分类)将导致对所有可能低能性质(即可能的共形场论)的分类。若此猜想成立,我们对无能隙态和量子场论的理解将跃升至新高度。量子场论问题,将不是一个微积分问题、微分方程问题、格林函数问题或纤维丛问题,而是一个范畴问题。或者更进一步,是一个数论问题。这完全改变了我们对量子场论和无能隙系统的基本看法和思路。这将成为量子场论与强关联量子物质研究的一个重要的方向,甚至可能是一个主导的方向。
中国和华裔科学家在这一新方向有众多开创性的贡献。下面罗列一些这方面早期的直接相关和间接相关的研究工作:
[1] Alexei Kitaev, Liang Kong
Models for gapped boundaries and domain walls
https://arxiv.org/abs/1104.5047
[2] L. Kong and X.-G. Wen,
Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions,
https://arxiv.org/abs/1405.5858
[3] D. Fiorenza and A. Valentino,
Boundary conditions for topological quantum field theories, anomalies and projective modular functors,
Commun. Math. Phys. 338, 1043 (2015),
https://arxiv.org/abs/1409.5723
[4] Maissam Barkeshli, Parsa Bonderson, Meng Cheng, Zhenghan Wang
Symmetry Fractionalization, Defects, and Gauging of Topological Phases
https://arxiv.org/abs/1410.4540
[5] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
Generalized global symmetries,
J. High Energ. Phys. 172, (2015);
https://arxiv.org/abs/1412.5148
[6] L. Kong, X.-G. Wen, and H. Zheng,
Boundary-bulk relation for topological orders as the functor mapping higher
categories to their centers,
https://arxiv.org/abs/1502.01690
[7] Meng Cheng, Cenke Xu
A series of (2+1)D Stable Self-Dual Interacting Conformal Field Theories
https://arxiv.org/abs/1609.02560
[8] Tian Lan, Liang Kong, Xiao-Gang Wen
A classification of 3+1D bosonic topological orders (I): the case when point-like excitations are all bosons
https://arxiv.org/abs/1704.04221
[9] L. Kong and H. Zheng,
Gapless edges of 2d topological orders and enriched monoidal categories,
Nucl. Phys. B 927, 140 (2018),
https://arxiv.org/abs/1705.01087
[10] C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, and X. Yin,
Topological defect lines and renormalization group flows in two dimensions,
J. High Energ. Phys. 2019 (1), 26,
https://arxiv.org/abs/1802.04445
[11] F. Benini, C. Córdova, and P.-S. Hsin,
On 2-group global symmetries and their anomalies,
J. High Energ. Phys. 2019 (3), 118,
https://arxiv.org/abs/1803.09336
[12] C. Zhu, T. Lan, and X.-G. Wen,
Topological nonlinear σ-model, higher gauge theory, and a systematic con-
struction of 3+1D topological orders for boson systems,
Phys. Rev. B 100, 045105 (2019),
https://arxiv.org/abs/1808.09394
[13] Qing-Rui Wang, Zheng-Cheng Gu
Construction and classification of symmetry protected topological phases in interacting fermion systems
https://arxiv.org/abs/1811.00536
[14] Z. Wan and J. Wang,
Higher anomalies, higher symmetries, and cobordisms I: classification of higher-
symmetry-protected topological states and their boundary fermionic/bosonic anomalies via a generalized cobordism theory,
Annals of Mathematical Sciences and Applications 4, 107 (2019), https://arxiv.org/abs/1812.11967
[15] Ce Shen, Ling-Yan Hung
A Defect Verlinde Formula
https://arxiv.org/abs/1901.08285
[16] R. Thorngren and Y. Wang,
Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases,
J. High Energ. Phys. 2024, 132,
https://arxiv.org/abs/1912.02817
[17] W. Ji and X.-G. Wen,
Categorical symmetry and non-invertible anomaly in symmetry-breaking and topological phase transitions,
Phys. Rev. Res. 2, 033417 (2020),
https://arxiv.org/abs/1912.13492
[18] T. Lichtman, R. Thorngren, N. H. Lindner, A. Stern, and E. Berg,
Bulk anyons as edge symmetries: Boundary phase diagrams of topologically ordered
states,
Physical Review B 104, 075141 (2021),
https://arxiv.org/abs/2003.04328
[19] L. Kong, T. Lan, X.-G. Wen, Z.-H. Zhang, and H. Zheng,
Algebraic higher symmetry and categorical symmetry: A holographic and entanglement view of symmetry,
Phys. Rev. Res. 2, 043086 (2020),
https://arxiv.org/abs/2005.14178
[20] Yuting Hu, Yidun Wan
Electric-Magnetic duality in twisted quantum double model of topological orders
https://arxiv.org/abs/2007.15636
[21] D. Gaiotto and J. Kulp,
Orbifold groupoids,
J. High Energ. Phys. 2021 (2), 132,
https://arxiv.org/abs/2008.05960
[22] Yuting Hu, Zichang Huang, Ling-yan Hung, Yidun Wan
Anyon Condensation: Coherent states, Symmetry Enriched Topological Phases, Goldstone Theorem, and Dynamical Rearrangement of Symmetry
https://arxiv.org/abs/2109.06145
[23] Yu-An Chen, Po-Shen Hsin
Exactly Solvable Lattice Hamiltonians and Gravitational Anomalies
https://arxiv.org/abs/2110.14644
[24] Yichul Choi, Clay Cordova, Po-Shen Hsin, Ho Tat Lam, Shu-Heng Shao
Non-Invertible Duality Defects in 3+1 Dimensions
https://arxiv.org/abs/2111.01139
[25] Justin Kaidi, Kantaro Ohmori, Yunqin Zheng
Kramers-Wannier-like duality defects in (3+1)d gauge theories
https://arxiv.org/abs/2111.01141
[26] F. Apruzzi, F. Bonetti, I. Etxebarria, S. Hosseini, and S. Schäfer-Nameki,
Symmetry TFTs from string theory,
Communications in Mathematical Physics 402, 895 (2023),
https://arxiv.org/abs/2112.02092
[27] A. Chatterjee and X.-G. Wen,
Symmetry as a shadow of topological order and a derivation of topological holographic principle,
Phys. Rev. B 107, 155136 (2023),
https://arxiv.org/abs/2203.03596
[28] Jian-Hao Zhang, Shang-Qiang Ning, Yang Qi, Zheng-Cheng Gu
Construction and classification of crystalline topological superconductor and insulators in three-dimensional interacting fermion systems
https://arxiv.org/abs/2204.13558
[29] Zhi-Feng Zhang, Qing-Rui Wang, Peng Ye
Non-Abelian Fusion, Shrinking and Quantum Dimensions of Abelian Gauge Fluxes
https://arxiv.org/abs/2208.09228
[30] Maissam Barkeshli, Yu-An Chen, Po-Shen Hsin, Ryohei Kobayashi
Higher-group symmetry in finite gauge theory and stabilizer codes
https://arxiv.org/abs/2211.11764
[31] Wen-Yuan Liu, Shou-Shu Gong, Wei-Qiang Chen, Zheng-Cheng Gu
Emergent Symmetry in Quantum Phase Transitions: From Deconfined Quantum Critical Point to Gapless Quantum Spin Liquid
https://arxiv.org/abs/2212.00707
[32] Yi-Nan Wang, Yi Zhang
Fermionic Higher-form Symmetries
https://arxiv.org/abs/2303.12633
[33] T. Lan and J.-R. Zhou,
Quantum Current and Holographic Categorical Symmetry
https://arxiv.org/abs/2305.12917
[34] Linhao Li, Masaki Oshikawa, Yunqin Zheng
Intrinsically/Purely Gapless-SPT from Non-Invertible Duality Transformations
https://arxiv.org/abs/2307.04788
[35] Ruizhi Liu, Ho Tat Lam, Han Ma, Liujun Zou
Symmetries and anomalies of Kitaev spin-S models: Identifying symmetry-enforced exotic quantum matter
https://arxiv.org/abs/2310.16839
[36] Xing-Yu Ren, Shang-Qiang Ning, Yang Qi, Qing-Rui Wang, Zheng-Cheng Gu
Stacking Group Structure of Fermionic Symmetry-Protected Topological Phases
https://arxiv.org/abs/2310.19058
[37] Gong Cheng, Lin Chen, Zheng-Cheng Gu, Ling-Yan Hung
Precision reconstruction of rational CFT from exact fixed point tensor network
https://arxiv.org/abs/2311.18005
[38] Leonardo A. Lessa, Meng Cheng, Chong Wang
Mixed-state quantum anomaly and multipartite entanglement
https://arxiv.org/abs/2401.17357
[39] Liang Kong, Zhi-Hao Zhang, Jiaheng Zhao, Hao Zheng
Higher condensation theory
https://arxiv.org/abs/2403.07813
[40] Ruochen Ma, Yabo Li, Meng Cheng
Quantum Cellular Automata on Symmetric Subalgebras
https://arxiv.org/abs/2411.19280
[41] Ryohei Kobayashi, Yuyang Li, Hanyu Xue, Po-Shen Hsin, Yu-An Chen
Universal microscopic descriptions for statistics of particles and extended excitations
https://arxiv.org/abs/2412.01886
特 别 提 示
1. 进入『返朴』微信公众号底部菜单“精品专栏“,可查阅不同主题系列科普文章。
2. 『返朴』提供按月检索文章功能。关注公众号,回复四位数组成的年份+月份,如“1903”,可获取2019年3月的文章索引,以此类推。
版权说明:欢迎个人转发,任何形式的媒体或机构未经授权,不得转载和摘编。转载授权请在「返朴」微信公众号内联系后台。